home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Libris Britannia 4
/
science library(b).zip
/
science library(b)
/
PROGRAMM
/
CC_C
/
0566.ZIP
/
ARCLZW.MAC
< prev
next >
Wrap
Text File
|
1986-01-20
|
28KB
|
794 lines
/* ARC - Archive utility - ARCLZW
$define(tag,$$segment(@1,$$index(@1,=)+1))#
$define(version,Version $tag(
TED_VERSION DB =1.88), created on $tag(
TED_DATE DB =01/20/86) at $tag(
TED_TIME DB =16:47:04))#
$undefine(tag)#
$version
(C) COPYRIGHT 1985 by System Enhancement Associates; ALL RIGHTS RESERVED
By: Thom Henderson
Description:
This file contains the routines used to implement Lempel-Zev
data compression, which calls for building a coding table on
the fly. This form of compression is especially good for encoding
files which contain repeated strings, and can often give dramatic
improvements over traditional Huffman SQueezing.
Language:
Computer Innovations Optimizing C86
Programming notes:
In this section I am drawing heavily on the COMPRESS program
from UNIX. The basic method is taken from "A Technique for High
Performance Data Compression", Terry A. Welch, IEEE Computer
Vol 17, No 6 (June 1984), pp 8-19. Also see "Knuth's Fundamental
Algorithms", Donald Knuth, Vol 3, Section 6.4.
As best as I can tell, this method works by tracing down a hash
table of code strings where each entry has the property:
if <string> <char> is in the table
then <string> is in the table.
*/
#include <stdio.h>
#include "arc.h"
/* definitions for older style crunching */
#define FALSE 0
#define TRUE !FALSE
#define TABSIZE 4096
#define NO_PRED 0xFFFF
#define EMPTY 0xFFFF
#define NOT_FND 0xFFFF
static unsigned int inbuf; /* partial input code storage */
static int sp; /* current stack pointer */
static struct entry /* string table entry format */
{ char used; /* true when this entry is in use */
unsigned int next; /* ptr to next in collision list */
unsigned int predecessor; /* code for preceeding string */
unsigned char follower; /* char following string */
} string_tab[TABSIZE]; /* the code string table */
/* definitions for the new dynamic Lempel-Zev crunching */
#define BITS 12 /* maximum bits per code */
#define HSIZE 5003 /* 80% occupancy */
#define INIT_BITS 9 /* initial number of bits/code */
static int n_bits; /* number of bits/code */
static int maxcode; /* maximum code, given n_bits */
#define MAXCODE(n) ((1<<(n)) - 1) /* maximum code calculation */
static int maxcodemax = 1 << BITS; /* largest possible code (+1) */
static char buf[BITS]; /* input/output buffer */
static unsigned char lmask[9] = /* left side masks */
{ 0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00 };
static unsigned char rmask[9] = /* right side masks */
{ 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
static int offset; /* byte offset for code output */
static long in_count; /* length of input */
static long bytes_out; /* length of compressed output */
static unsigned int ent;
/* To save much memory (which we badly need at this point), we overlay
* the table used by the previous version of Lempel-Zev with those used
* by the new version. Since no two of these routines will be used
* together, we can safely do this. Note that the tables used for Huffman
* squeezing may NOT overlay these, since squeezing and crunching are done
* in parallel.
*/
static long *htab = string_tab; /* hash code table (crunch) */
static unsigned int codetab[HSIZE]; /* string code table (crunch) */
static unsigned int *prefix = codetab; /* prefix code table (uncrunch) */
static unsigned char *suffix = string_tab; /* suffix table (uncrunch) */
static int free_ent; /* first unused entry */
static int firstcmp; /* true at start of compression */
static unsigned char stack[HSIZE]; /* local push/pop stack */
/*
* block compression parameters -- after all codes are used up,
* and compression rate changes, start over.
*/
static int clear_flg;
static long ratio;
#define CHECK_GAP 10000 /* ratio check interval */
static long checkpoint;
/*
* the next two codes should not be changed lightly, as they must not
* lie within the contiguous general code space.
*/
#define FIRST 257 /* first free entry */
#define CLEAR 256 /* table clear output code */
static cl_block(t) /* table clear for block compress */
FILE *t; /* our output file */
{
long int rat;
checkpoint = in_count + CHECK_GAP;
if(in_count > 0x007fffff) /* shift will overflow */
{ rat = bytes_out >> 8;
if(rat == 0) /* Don't divide by zero */
rat = 0x7fffffff;
else rat = in_count / rat;
}
else rat = (in_count<<8)/bytes_out;/* 8 fractional bits */
if(rat > ratio)
ratio = rat;
else
{ ratio = 0;
setmem(htab,HSIZE*sizeof(long),0xff);
free_ent = FIRST;
clear_flg = 1;
putcode(CLEAR,t);
}
}
/*****************************************************************
*
* Output a given code.
* Inputs:
* code: A n_bits-bit integer. If == -1, then EOF. This assumes
* that n_bits =< (long)wordsize - 1.
* Outputs:
* Outputs code to the file.
* Assumptions:
* Chars are 8 bits long.
* Algorithm:
* Maintain a BITS character long buffer (so that 8 codes will
* fit in it exactly). When the buffer fills up empty it and start over.
*/
static putcode(code,t) /* output a code */
int code; /* code to output */
FILE *t; /* where to put it */
{
int r_off = offset; /* right offset */
int bits = n_bits; /* bits to go */
char *bp = buf; /* buffer pointer */
int n; /* index */
if(code >= 0) /* if a real code */
{ /*
* Get to the first byte.
*/
bp += (r_off >> 3);
r_off &= 7;
/*
* Since code is always >= 8 bits, only need to mask the first
* hunk on the left.
*/
*bp = (*bp&rmask[r_off]) | (code<<r_off) & lmask[r_off];
bp++;
bits -= (8 - r_off);
code >>= (8 - r_off);
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if(bits >= 8)
{ *bp++ = code;
code >>= 8;
bits -= 8;
}
/* Last bits. */
if(bits)
*bp = code;
offset += n_bits;
if(offset == (n_bits << 3))
{ bp = buf;
bits = n_bits;
bytes_out += bits;
do
putc_pak(*bp++,t);
while(--bits);
offset = 0;
}
/*
* If the next entry is going to be too big for the code size,
* then increase it, if possible.
*/
if(free_ent>maxcode || clear_flg>0)
{ /*
* Write the whole buffer, because the input side won't
* discover the size increase until after it has read it.
*/
if(offset > 0)
{ bp = buf; /* reset pointer for writing */
bytes_out += n = n_bits;
while(n--)
putc_pak(*bp++,t);
}
offset = 0;
if(clear_flg) /* reset if clearing */
{ maxcode = MAXCODE(n_bits = INIT_BITS);
clear_flg = 0;
}
else /* else use more bits */
{ n_bits++;
if(n_bits == BITS)
maxcode = maxcodemax;
else
maxcode = MAXCODE(n_bits);
}
}
}
else /* dump the buffer on EOF */
{ bytes_out += n = (offset+7) / 8;
if(offset > 0)
while(n--)
putc_pak(*bp++,t);
offset = 0;
}
}
/*****************************************************************
*
* Read one code from the standard input. If EOF, return -1.
* Inputs:
* cmpin
* Outputs:
* code or -1 is returned.
*/
static int getcode(f) /* get a code */
FILE *f; /* file to get from */
{
int code;
static int offset = 0, size = 0;
int r_off, bits;
unsigned char *bp = buf;
if(clear_flg > 0 || offset >= size || free_ent > maxcode)
{ /*
* If the next entry will be too big for the current code
* size, then we must increase the size. This implies reading
* a new buffer full, too.
*/
if(free_ent > maxcode)
{ n_bits++;
if(n_bits == BITS)
maxcode = maxcodemax; /* won't get any bigger now */
else maxcode = MAXCODE(n_bits);
}
if(clear_flg > 0)
{ maxcode = MAXCODE(n_bits = INIT_BITS);
clear_flg = 0;
}
for(size=0; size<n_bits; size++)
{ if((code=getc_unp(f))==EOF)
break;
else buf[size] = code;
}
if(size <= 0)
return -1; /* end of file */
offset = 0;
/* Round size down to integral number of codes */
size = (size << 3)-(n_bits - 1);
}
r_off = offset;
bits = n_bits;
/*
* Get to the first byte.
*/
bp +=(r_off >> 3);
r_off &= 7;
/* Get first part (low order bits) */
code = (*bp++ >> r_off);
bits -= 8 - r_off;
r_off = 8 - r_off; /* now, offset into code word */
/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
if(bits >= 8)
{ code |= *bp++ << r_off;
r_off += 8;
bits -= 8;
}
/* high order bits. */
code |= (*bp & rmask[bits]) << r_off;
offset += n_bits;
return code;
}
/*
* compress a file
*
* Algorithm: use open addressing double hashing (no chaining) on the
* prefix code / next character combination. We do a variant of Knuth's
* algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
* secondary probe. Here, the modular division first probe is gives way
* to a faster exclusive-or manipulation. Also do block compression with
* an adaptive reset, where the code table is cleared when the compression
* ratio decreases, but after the table fills. The variable-length output
* codes are re-sized at this point, and a special CLEAR code is generated
* for the decompressor.
*/
init_cm(f,t) /* initialize for compression */
FILE *f; /* file we will be compressing */
FILE *t; /* where we will put it */
{
offset = 0;
bytes_out = 1;
clear_flg = 0;
ratio = 0;
in_count = 1;
checkpoint = CHECK_GAP;
maxcode = MAXCODE(n_bits = INIT_BITS);
free_ent = FIRST;
setmem(htab,HSIZE*sizeof(long),0xff);
n_bits = INIT_BITS; /* set starting code size */
putc_pak(BITS,t); /* note our max code length */
firstcmp = 1; /* next byte will be first */
}
putc_cm(c,t) /* compress a character */
unsigned char c; /* character to compress */
FILE *t; /* where to put it */
{
static long fcode;
static int hshift;
int i;
int disp;
if(firstcmp) /* special case for first byte */
{ ent = c; /* remember first byte */
hshift = 0;
for(fcode=(long)HSIZE; fcode<65536L; fcode*=2L)
hshift++;
hshift = 8 - hshift; /* set hash code range bound */
firstcmp = 0; /* no longer first */
return;
}
in_count++;
fcode =(long)(((long)c << BITS)+ent);
i = (c<<hshift)^ent; /* xor hashing */
if(htab[i]==fcode)
{ ent = codetab[i];
return;
}
else if(htab[i]<0) /* empty slot */
goto nomatch;
disp = HSIZE - i; /* secondary hash (after G.Knott) */
if(i == 0)
disp = 1;
probe:
if((i -= disp) < 0)
i += HSIZE;
if(htab[i] == fcode)
{ ent = codetab[i];
return;
}
if(htab[i] > 0)
goto probe;
nomatch:
putcode(ent,t);
ent = c;
if(free_ent < maxcodemax)
{ codetab[i] = free_ent++; /* code -> hashtable */
htab[i] = fcode;
}
else if((long int)in_count >= checkpoint)
cl_block(t);
}
long pred_cm(t) /* finish compressing a file */
FILE *t; /* where to put it */
{
putcode(ent,t); /* put out the final code */
putcode(-1,t); /* tell output we are done */
return bytes_out; /* say how big it got */
}
/*
* Decompress a file. This routine adapts to the codes in the file
* building the string table on-the-fly; requiring no table to be stored
* in the compressed file. The tables used herein are shared with those of
* the compress() routine. See the definitions above.
*/
decomp(f,t) /* decompress a file */
FILE *f; /* file to read codes from */
FILE *t; /* file to write text to */
{
unsigned char *stackp;
int finchar;
int code, oldcode, incode;
if((code=getc_unp(f))!=BITS)
abort("File packed with %d bits, I can only handle %d",code,BITS);
n_bits = INIT_BITS; /* set starting code size */
clear_flg = 0;
/*
* As above, initialize the first 256 entries in the table.
*/
maxcode = MAXCODE(n_bits=INIT_BITS);
for(code = 255; code >= 0; code--)
{ prefix[code] = 0;
suffix[code] = (unsigned char)code;
}
free_ent = FIRST;
finchar = oldcode = getcode(f);
if(oldcode == -1) /* EOF already? */
return; /* Get out of here */
putc_ncr((char)finchar,t); /* first code must be 8 bits=char */
stackp = stack;
while((code = getcode(f))> -1)
{ if(code==CLEAR)
{ for(code = 255; code >= 0; code--)
prefix[code] = 0;
clear_flg = 1;
free_ent = FIRST - 1;
if((code=getcode(f))==-1)/* O, untimely death! */
break;
}
incode = code;
/*
* Special case for KwKwK string.
*/
if(code >= free_ent)
{ *stackp++ = finchar;
code = oldcode;
}
/*
* Generate output characters in reverse order
*/
while(code >= 256)
{ *stackp++ = suffix[code];
code = prefix[code];
}
*stackp++ = finchar = suffix[code];
/*
* And put them out in forward order
*/
do
putc_ncr(*--stackp,t);
while(stackp > stack);
/*
* Generate the new entry.
*/
if((code=free_ent) < maxcodemax)
{ prefix[code] = (unsigned short)oldcode;
suffix[code] = finchar;
free_ent = code+1;
}
/*
* Remember previous code.
*/
oldcode = incode;
}
}
/*************************************************************************
* Please note how much trouble it can be to maintain upwards *
* compatibility. All that follows is for the sole purpose of unpacking *
* files which were packed using an older method. *
*************************************************************************/
/* The h() pointer points to the routine to use for calculating a hash
value. It is set in the init routines to point to either of oldh()
or newh().
oldh() calculates a hash value by taking the middle twelve bits
of the square of the key.
newh() works somewhat differently, and was tried because it makes
ARC about 23% faster. This approach was abandoned because dynamic
Lempel-Zev (above) works as well, and packs smaller also. However,
inadvertent release of a developmental copy forces us to leave this in.
*/
static unsigned (*h)(); /* pointer to hash function */
static unsigned oldh(pred,foll) /* old hash function */
unsigned int pred; /* code for preceeding string */
unsigned char foll; /* value of following char */
{
long local; /* local hash value */
local = (pred + foll) | 0x0800; /* create the hash key */
local *= local; /* square it */
return (local >> 6) & 0x0FFF; /* return the middle 12 bits */
}
static unsigned newh(pred,foll) /* new hash function */
unsigned int pred; /* code for preceeding string */
unsigned char foll; /* value of following char */
{
return ((pred+foll)*15073)&0xFFF; /* faster hash */
}
/* The eolist() function is used to trace down a list of entries with
duplicate keys until the last duplicate is found.
*/
static unsigned eolist(index) /* find last duplicate */
unsigned int index;
{
int temp;
while(temp=string_tab[index].next) /* while more duplicates */
index = temp;
return index;
}
/* The hash() routine is used to find a spot in the hash table for a new
entry. It performs a "hash and linear probe" lookup, using h() to
calculate the starting hash value and eolist() to perform the linear
probe. This routine DOES NOT detect a table full condition. That
MUST be checked for elsewhere.
*/
static unsigned hash(pred,foll) /* find spot in the string table */
unsigned int pred; /* code for preceeding string */
unsigned char foll; /* char following string */
{
unsigned int local, tempnext; /* scratch storage */
struct entry *ep; /* allows faster table handling */
local = (*h)(pred,foll); /* get initial hash value */
if(!string_tab[local].used) /* if that spot is free */
return local; /* then that's all we need */
else /* else a collision has occured */
{ local = eolist(local); /* move to last duplicate */
/* We must find an empty spot. We start looking 101 places
down the table from the last duplicate.
*/
tempnext = (local+101) & 0x0FFF;
ep = &string_tab[tempnext]; /* initialize pointer */
while(ep->used) /* while empty spot not found */
{ if(++tempnext==TABSIZE) /* if we are at the end */
{ tempnext = 0; /* wrap to beginning of table*/
ep = string_tab;
}
else ++ep; /* point to next element in table */
}
/* local still has the pointer to the last duplicate, while
tempnext has the pointer to the spot we found. We use
this to maintain the chain of pointers to duplicates.
*/
string_tab[local].next = tempnext;
return tempnext;
}
}
/* The unhash() function is used to search the hash table for a given key.
Like hash(), it performs a hash and linear probe search. It returns
either the number of the entry (if found) or NOT_FND (if not found).
*/
static unsigned unhash(pred,foll) /* search string table for a key */
unsigned int pred; /* code of preceeding string */
unsigned char foll; /* character following string */
{
unsigned int local, offset; /* scratch storage */
struct entry *ep; /* this speeds up access */
local = (*h)(pred,foll); /* initial hash */
while(1)
{ ep = &string_tab[local]; /* speed up table access */
if((ep->predecessor==pred) && (ep->follower==foll))
return local; /* we have a match */
if(!ep->next) /* if no more duplicates */
return NOT_FND; /* then key is not listed */
local = ep->next; /* move on to next duplicate */
}
}
/* The init_tab() routine is used to initialize our hash table.
You realize, of course, that "initialize" is a complete misnomer.
*/
static init_tab() /* set ground state in hash table */
{
unsigned int i; /* table index */
setmem((char *)string_tab,sizeof(string_tab),0);
for(i=0; i<256; i++) /* list all single byte strings */
upd_tab(NO_PRED,i);
inbuf = EMPTY; /* nothing is in our buffer */
}
/* The upd_tab routine is used to add a new entry to the string table.
As previously stated, no checks are made to ensure that the table
has any room. This must be done elsewhere.
*/
upd_tab(pred,foll) /* add an entry to the table */
unsigned int pred; /* code for preceeding string */
unsigned int foll; /* character which follows string */
{
struct entry *ep; /* pointer to current entry */
/* calculate offset just once */
ep = &string_tab[hash(pred,foll)];
ep->used = TRUE; /* this spot is now in use */
ep->next = 0; /* no duplicates after this yet */
ep->predecessor = pred; /* note code of preceeding string */
ep->follower = foll; /* note char after string */
}
/* This algorithm encoded a file into twelve bit strings (three nybbles).
The gocode() routine is used to read these strings a byte (or two)
at a time.
*/
static gocode(fd) /* read in a twelve bit code */
FILE *fd; /* file to get code from */
{
unsigned int localbuf, returnval;
if(inbuf==EMPTY) /* if on a code boundary */
{ if((localbuf=getc_unp(fd))==EOF) /* get start of next code */
return EOF; /* pass back end of file status */
localbuf &= 0xFF; /* mask down to true byte value */
if((inbuf=getc_unp(fd))==EOF) /* get end of code, start of next */
return EOF; /* this should never happen */
inbuf &= 0xFF; /* mask down to true byte value */
returnval = ((localbuf<<4)&0xFF0) + ((inbuf>>4)&0x00F);
inbuf &= 0x000F; /* leave partial code pending */
}
else /* buffer contains first nybble */
{ if((localbuf=getc_unp(fd))==EOF)
return EOF;
localbuf &= 0xFF;
returnval = localbuf + ((inbuf<<8)&0xF00);
inbuf = EMPTY; /* note no hanging nybbles */
}
return returnval; /* pass back assembled code */
}
static push(c) /* push char onto stack */
int c; /* character to push */
{
stack[sp] = ((char) c); /* coerce integer into a char */
if(++sp >= TABSIZE)
abort("Stack overflow\n");
}
static int pop() /* pop character from stack */
{
if(sp>0)
return ((int) stack[--sp]); /* leave ptr at next empty slot */
else return EMPTY;
}
/***** LEMPEL-ZEV DECOMPRESSION *****/
static int code_count; /* needed to detect table full */
static unsigned code; /* where we are so far */
static int firstc; /* true only on first character */
init_ucr(new) /* get set for uncrunching */
int new; /* true to use new hash function */
{
if(new) /* set proper hash function */
h = newh;
else h = oldh;
sp = 0; /* clear out the stack */
init_tab(); /* set up atomic code definitions */
code_count = TABSIZE - 256; /* note space left in table */
firstc = 1; /* true only on first code */
}
int getc_ucr(f) /* get next uncrunched byte */
FILE *f; /* file containing crunched data */
{
unsigned int c; /* a character of input */
int code, newcode;
static int oldcode, finchar;
struct entry *ep; /* allows faster table handling */
if(firstc) /* first code is always known */
{ firstc = FALSE; /* but next will not be first */
oldcode = gocode(f);
return finchar = string_tab[oldcode].follower;
}
if(!sp) /* if stack is empty */
{ if((code=newcode=gocode(f))==EOF)
return EOF;
ep = &string_tab[code]; /* initialize pointer */
if(!ep->used) /* if code isn't known */
{ code = oldcode;
ep = &string_tab[code]; /* re-initialize pointer */
push(finchar);
}
while(ep->predecessor!=NO_PRED)
{ push(ep->follower); /* decode string backwards */
code = ep->predecessor;
ep = &string_tab[code];
}
push(finchar=ep->follower); /* save first character also */
/* The above loop will terminate, one way or another,
with string_tab[code].follower equal to the first
character in the string.
*/
if(code_count) /* if room left in string table */
{ upd_tab(oldcode,finchar);
--code_count;
}
oldcode = newcode;
}
return pop(); /* return saved character */
}